A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions

نویسندگان

  • Peter Collings
  • Zhibin Yu
  • Enhua Wang
چکیده

Air-cooled condensers are widely used for Organic Rankine Cycle (ORC) power plants where cooling water is unavailable or too costly, but they are then vulnerable to changing ambient air temperatures especially in continental climates, where the air temperature difference between winter and summer can be over 40 C. A conventional ORC system using a single component working fluid has to be designed according to the maximum air temperature in summer and thus operates far from optimal design conditions for most of the year, leading to low annual average efficiencies. This research proposes a novel dynamic ORC that uses a binary zeotropic mixture as the working fluid, with mechanisms in place to adjust the mixture composition dynamically during operation in response to changing heat sink conditions, significantly improving the overall efficiency of the plant. The working principle of the dynamic ORC concept is analysed. The case study results show that the annual average thermal efficiency can be improved by up to 23% over a conventional ORC when the heat source is 100 C, while the evaluated increase of the capital cost is less than 7%. The dynamic ORC power plants are particularly attractive for low temperature applications, delivering shorter payback periods compared to conventional ORC systems. 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http:// creativecommons.org/licenses/by/4.0/).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle

Using zeotropic mixtures as working fluids can improve the thermal efficiency of Organic Rankine cycle (ORC) power plants for utilising geothermal energy. However, currently, such ORC systems cannot regulate the composition of zeotropic mixtures when their operating conditions change. A compositionadjustable ORC system could potentially improve the thermal efficiency by closely matching the cyc...

متن کامل

Analysis of Zeotropic Mixture in a Geothermal Organic Rankine Cycle Power Plant with an Air-cooled Condenser

The purpose of this research is to investigate a zeotropic working fluid mixture in terms of its performance in an organic Rankine cycle (ORC) and the heat transfer characteristics in an air-cooled condenser (ACC). The motivation of this study is that it is well known that the use of a mixture improves the efficiency of an ORC system. However, the behaviour of the mixture in the condensers is n...

متن کامل

Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery "2279

We present a thermo-economic analysis of an Organic Rankine Cycle (ORC) for waste heat recovery. A case study for a heat source temperature of 150 ̋C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mi...

متن کامل

Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC) for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. B...

متن کامل

Numerical Analysis of an Organic Rankine Cycle with Adjustable Working Fluid Composition, a Volumetric Expander and a Recuperator

Conventional Organic Rankine Cycles (ORCs) using ambient air as their coolant cannot fully utilize the greater temperature differential available to them during the colder months. However, changing the working fluid composition so its boiling temperature matches the ambient temperature as it changes has been shown to have potential to increase year-round electricity generation. Previous researc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016